安卓手机扫描二维码安装App

第2041题:副对角线行列式



我们知道,关于主对角线的上下三角行列式的值等于主对角线元素的乘积,那么关于副对角线的上下“三角行列式”


a11a12a1,n1a1na21a22a2,n10an1,1an1,200an1000\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2,n-1} & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & 0 & 0 \\ a_{n1} & 0 & \cdots & 0 & 0 \end{vmatrix}



000a1n00a2,n1a2n0an1,2an1,n1an1,nan1an2an,n1ann\begin{vmatrix} 0 & 0 & \cdots & 0 & a_{1n} \\ 0 & 0 & \cdots & a_{2,n-1} & a_{2n} \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & a_{n-1,2} & \cdots & a_{n-1,n-1} & a_{n-1,n} \\ a_{n1} & a_{n2} & \cdots & a_{n,n-1} & a_{nn} \end{vmatrix}


的值等于(  ).



A. a1na2,n1an1a_{1n} a_{2,n-1} \cdots a_{n1}


B. a1na2,n1an1-a_{1n} a_{2,n-1} \cdots a_{n1}


C. (1)n(n1)a1na2,n1an1(-1)^{n(n-1)}a_{1n} a_{2,n-1} \cdots a_{n1}


D. (1)n(n1)2a1na2,n1an1(-1)^{\frac{n(n-1)}{2}} a_{1n} a_{2,n-1} \cdots a_{n1}

苹果手机扫描二维码安装App
我来回答