安卓手机扫描二维码安装App

第2363题:积分公式



P(x)P(x)nn 次多项式,aa 为常数,则P(x)eax \int P(x) \mathrm{e}^{ax} dxdx 等于(  ).


 

A. eax[P(x)a \mathrm{e}^{ax} \Big [ \dfrac{P(x)}{a}  P(x)a2++-\dfrac{P'(x)}{a^2}+\cdots+ (1)nPn(x)an+1]+C(-1)^n \dfrac{P^{n}(x)}{a^{n+1}} \Big ] +C


 

B. eax[P(x)a\mathrm{e}^{ax} \Big [ \dfrac{P(x)}{a}  +P(x)a2+++\dfrac{P'(x)}{a^2}+\cdots+ Pn(x)an+1]+C\dfrac{P^{n}(x)}{a^{n+1}} \Big ] +C

 

 

C.eax[P(x)a \mathrm{e}^{ax} \Big [ \dfrac{P(x)}{a} P(x)a2-\dfrac{P'(x)}{a^2}-\cdots- Pn(x)an+1]+C\dfrac{P^{n}(x)}{a^{n+1}} \Big ] +C

 

 

D. eax[P(x)a \mathrm{e}^{ax} \Big [ \dfrac{P'(x)}{a} P(x)a2++-\dfrac{P''(x)}{a^2}+\cdots+ (1)nPn(x)an]+C(-1)^n \dfrac{P^{n}(x)}{a^{n}} \Big ] +C

 

 

注:选自《吉米多维奇习题集3》超越函数积分法.
苹果手机扫描二维码安装App
我来回答