第2268题:换元法
用换元法计算积分
∫−228−2x2dx=?\int_{-\sqrt{2}}^{\sqrt{2}} \sqrt{8-2x^2} dx=?∫−√2√2√8−2x2dx=?
A. 2(π+2)\sqrt{2}(\pi+2)√2(π+2)
B. 22(π+2)\dfrac{\sqrt{2}}{2}(\pi+2)2√2(π+2)
C. 2π\sqrt{2} \pi√2π
D.2π2\dfrac{\sqrt{2} \pi}{2}2√2π
令 x=2sinux=2\sin ux=2sinu .
计算中,∫cos2udu=\int \cos ^2 u du=∫cos2udu= u2+14sin2u\dfrac{u}{2}+\dfrac{1}{4} \sin 2u 2u+41sin2u +C +C+C .