第1996题:换元法
计算不定积分 ∫x3+1(x2+1)2dx \int \dfrac{x^3+1}{(x^2+1)^2} dx∫(x2+1)2x3+1dx 时,采用以下哪种换元最为简单?
A. 令 x=sintx=\sin tx=sint , (−π4<t<π4)\Big ( -\dfrac{\pi}{4}<t<\dfrac{\pi}{4} \Big )(−4π<t<4π)
B. 设 x=tantx=\tan tx=tant ,(−π2<t<π2) \Big ( -\dfrac{\pi}{2}<t<\dfrac{\pi}{2} \Big )(−2π<t<2π)
C. 设 x2+1=sintx^2+1=\sin tx2+1=sint , (−π4<t<π4)\Big ( -\dfrac{\pi}{4}<t<\dfrac{\pi}{4} \Big )(−4π<t<4π)
D. 设 x2+1=tantx^2+1=\tan tx2+1=tant ,(−π2<t<π2) \Big ( -\dfrac{\pi}{2}<t<\dfrac{\pi}{2} \Big )(−2π<t<2π)