第2312题:解微分方程
微分方程 cosydx\cos y dxcosydx +(1+e−x)sinydy=0+(1+\mathrm{e}^{-x}) \sin y dy=0+(1+e−x)sinydy=0 满足初值条件 y∣x=0=π y|_{x=0} =\piy∣x=0=π 的特解为( ).
A. cosy=1+ex2\cos y= \dfrac{1+\mathrm{e}^x}{2}cosy=21+ex
B. cosy=−1+ex2\cos y= -\dfrac{1+\mathrm{e}^x}{2}cosy=−21+ex
C. cosy=2(1+ex)\cos y= \sqrt{2}(1+\mathrm{e}^x)cosy=√2(1+ex)
D. cosy=−2(1+ex)\cos y= -\sqrt{2}(1+\mathrm{e}^x)cosy=−√2(1+ex)